Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

Neuroprotective Mechanism of Corydaline in Glutamate-Induced Neurotoxicity in HT22 Cells

International Journal of Oral Biology 2024³â 49±Ç 1È£ p.10 ~ 17
Baskar Selvaraj, ±è´ë¿ø, À¯±â¿¬, ¹Ú±Ù¿Ï, Thi Thu Thuy Tran, ÀÌÀç¿í, ÀÌÈñ¼ö,
¼Ò¼Ó »ó¼¼Á¤º¸
 ( Baskar Selvaraj ) - 
±è´ë¿ø ( Kim Dae-Won ) - 
À¯±â¿¬ ( Yoo Ki-Yeon ) - 
¹Ú±Ù¿Ï ( Park Keun-Wan ) - 
 ( Thi Thu Thuy Tran ) - 
ÀÌÀç¿í ( Lee Jae-Wook ) - 
ÀÌÈñ¼ö ( Lee Hee-Su ) - 

Abstract


Glutamate-mediated oxidative stress causes neuronal cell death by increasing intracellular Ca 2+ uptake, reactive oxidative species (ROS) generation, mitogen-activated protein kinase (MAPK) activation, and translocation of apoptosis-inducing factor (AIF) to the nucleus. In the current study, we demonstrated that corydaline exerts potent neuroprotective effects against glutamate-induced neurotoxicity. Treatment with 5 mmol/L glutamate increased cellular Ca 2+ influx, ROS generation, MAPK activation, and AIF translocation. In contrast, corydaline treatment decreased cellular Ca 2+ influx and ROS generation. Western blot analysis revealed that glutamate-mediated MAPK activation was attenuated by corydaline treatment. We further demonstrated that corydaline treatment inhibited the glutamate-mediated translocation of AIF to the nucleus. We propose that corydaline is a promising lead structure for the development of safe and effective neuroprotectants.

Å°¿öµå

Glutamate-induced neurotoxicity; HT22 mouse hippocampal neuronal cells; Corydaline

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

 

µîÀçÀú³Î Á¤º¸